Matrix cells from Wharton's jelly form neurons and glia.
نویسندگان
چکیده
We have identified an easily attainable source of primitive, potentially multipotent stem cells from Wharton's jelly, the matrix of umbilical cord. Wharton's jelly cells have been propagated in culture for more than 80 population doublings. Several markers for stem cells, including c-kit (CD117), and telomerase activity are expressed in these cells. Treatment with basic fibroblast growth factor overnight and low-serum media plus butylated hydroxyanisole and dimethylsulfoxide induced Wharton's jelly cells to express a neural phenotype. Within several hours of this treatment, Wharton's jelly cells developed rounded cell bodies with multiple neurite-like extensions, similar to the morphology of neural stem cells. Neuron-specific enolase (NSE), a neural stem cell marker, was expressed in these cells, as shown by immunocytochemistry. Immunoblot analysis showed similar levels of NSE expression in both untreated and induced Wharton's jelly cells. After 3 days, the induced Wharton's jelly cells resembled bipolar or multipolar neurons, with processes that formed networks reminiscent of primary cultures of neurons. The neuron-like cells in these cultures stained positively for several neuronal proteins, including neuron-specific class III beta-tubulin, neurofilament M, an axonal growth-cone-associated protein, and tyrosine hydroxylase. Immunoblot analysis showed increasing levels of protein markers for mature neurons over time post induction. Markers for oligodendrocytes and astrocytes were also detected in Wharton's jelly cells. These exciting findings show that cells from the matrix of umbilical cord have properties of stem cells and may, thus, be a rich source of primitive cells. This study shows their capacity to differentiate into a neural phenotype in vitro.
منابع مشابه
FGF binding by extracellular matrix components of Wharton's jelly.
Our earlier paper has reported that Wharton's jelly is a reservoir of several peptide growth factors, including acidic and basic fibroblast growth factors (aFGF and bFGF, respectively). Both can be extracted by buffered salts solutions in the form of high molecular mass complexes, probably with a component(s) of the extracellular matrix. Both aFGF and bFGF from such extracts hardly penetrate 10...
متن کاملارزیابی نشانگرهای سطحی و ژنهای وابسته به آنها در سلولهای بنیادی مزانشیمی ژله وارتون بند ناف انسانی
Background and purpose: Umbilical cord derived Wharton's jelly is an enriched and accessible source of stem cells with highly proliferative and differentiation potential. This study aimed to evaluate the surface markers and related genes of the stem cells isolated from the human Wharton's jelly. Materials and methods: Explants of the human umbilical cord derived Wharton's jelly was dissecte...
متن کاملAssess The Pluripotency of Caprine Umbilical Cord Wharton’s Jelly Mesenchymal Cells By RT-PCR Analysis of Early Transcription Factor Nanog
Objective- In the present study we investigated the isolation protocol, population doubling time (PDT) and the expression of a pluripotential gene by RT-PCR analysis of early transcription factor Nanog in caprine umbilical cord (CUC) Wharton's jelly mesenchymal cells (WJMCs). Design- Experimental in vitro study. Animals- Four mix breed goat. Procedures- CUCs were collected from abattoi...
متن کاملDistribution of cathepsin L in human umbilical cord tissues.
The extracellular matrix components show specific distribution patterns within various structures of the umbilical cord, among which Wharton's jelly is especially collagen-rich tissue. Cathepsin L is a potent cysteine protease engaged in degradation of extracellular matrix proteins, including collagens. We evaluated the activity and expression of cathepsin L, and the inhibitory effect of cystei...
متن کاملGrowth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs
Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2003